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ESTIIVtATING PERFORMANCE CAPABILITIES OF BOOST ROCKETS

This paper reports results of a parametric study of boost rockets. The term

boost rocket includes rockets launched from the surface of the earth for the pur-

pose of achieving near-orbital or greater velocities.

The parameters studied can be divided into two categories: vehicle design

parameters and trajectory parameters. Vehicle design parameters describe the

physical rocket and include such quantities as weights, thrusts, propellant flow

rates, drag coefficients, and the like.--,A set of these parameters would serve as

a basic set of specifications with which to design a vehicle. - Trajectory parame-

ters include such quantities as impact range, apogee altitude, and burnout velo-

city., Trajectory parameters can serve, though not uniquely, as specifications

for a ýi'saile system as well. A particular vehicle system can perform many

missiPI{¶• and any one mission can be performed by many vehicles. We usually

think of rhissions in terms of trajectory parameters and vehicles in terms of

design parameters, and the problem becomes to relate the two.

The simplest relation is found in the well-known equation:

V= I g In r. (1)1 1

where

I. = stage i specific impulse; thrust divided by flow rate of fuel

g = gravitational constant = 32. 2 ft/secz

r. = stage i burnout mass ratio; initial mass divided by burnout mass

V. = velocity added during stage i.

If several stages are used, the total velocity is the sum of the velocities

added during each stage. Certain assumptions are used in the derivation of the

rocket equation which limits its usefulness for boost rockets. They are: (a) no

gravitational acceleration, (b) no drag, and (c) specific impulse is constant.

When it becomes necessary to include these effects, the most frequent technique

is to solve the differential equations of motion by use of a computing machine.
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Since some of the inputs to the problem ai'e not analytic, such as drag coefficient

versus Mach number, the machine uses an integration technique which virtually

"flies" the missile on the computer. In this manner impact range, apogee alti-

tude, burnout velocity, burnout altitude, and so forth can be determined as func-

tions of vehicle design pa:rameters.

The same vehicle can be flown on many paths, so it is necessary to provide

the machine with some sort of steering program. The most frequently used pro-

gram for the atmospheric portion of flight is the "zero-lift" turn. Assuming that

the rocket thrust vector is aligned with the vehicle longitudinal axis, the vehicle

attitude is programmed to coincide with the rocket velocity vector. For this

reason, the zero-lift trajectory is frequently referred to as the "gravity turn.

If a rotating earth is used, the thrust is aligned with the velocity vector as com-

puted in a rotating coordinate system. Since the missile is launched with zero

initial velocity, a singularity exists for the velocity angle at the instant of launch.

All gravity turn trajectories, regardless of burnout angle, must launch vertically.

For that reason, a mathematical artifice (an initial "kick" angle) is applied to the

velocity vector a few seconds after launch to start the turn.

Most problems can be solved by the computer very quickly, and the accuracy

of the results is almost beyond question. But there are disadvantages as well.

First, the actual computer time consumed may be small, but the time required

to prepare the input data and arrange for computer time can be quite long in com-

parison. Secondly, the accuracy required of results for preliminary design pur-

poses is quite different from that required for, let us say, targeting purposes;

and the high accuracy offered by the digital machine frequently goes to waste.

Finally, it is one thing to be able to feed the computer one set of data and have a

set of answers returned and quite another to be able to view an analytic relation

or graph and get a "feel" for the whole system. For these reasons, simplified,

even if approximate, solutions to the problem of determining trajectory paramn-

eters for boost vehicles are quite useful.

Two techniques may be employed to determine approximate solutions to the

differential equations of motion. One technique uses approximation before the
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equations are solved. The original model is transformed into a simpler one for

which the solutions are known. In this case-one must make & priori guesses as

to the accuracy lost in simplification. However, the digital computer has pro-

vided the tool for making approximations after solution. The model which is

simplified is *the solution, not the set of differential equations; and the a.ccuracy

of the approximations can be readily observed. The latter technique has been

employed in this study.

The differential equations are helpful in showing which variable will be

important to consider. A short, theoretical analysis, appended to this report,

has shown that the following missile design parameters, together with a burnout

velocity angle, will determine a trajectory.

I vacuum specific impulse; vacuum thrust divided by flow rate

r mass ratio

N ratio of initial (launch) thrust to lift-off weight0
CD A

DM drag parameter; CDM is the maximum value for drag coefficient

versus Mach number, A is the reference area, and W is the lift-
off weight of missile. 0

I

T ratio of initial specific impulse to vacuum specific impulse
I

tb burning time - G ) for constant weight flow ratetb Nunn ie - I- r

0

The trajectory parameters studied are:

V b burnout velocity

Pb velocity burnout angle (with respect to local vertical)

hb burnout altitude from the earth's surface

X b surface range at burnout

R impact range
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It is clear from the number of parameters studied that it would be impossible

to simply plot the results. Therefore, simplification and codification of the

results have been a significant part of the study. Results are presented in two

forms: (a) a set of general equations for determining Vb- hb. and xb versus Pb

for selected ranges of missile design parameters (where necessary "constants"

used in the equations are presented in graphical form) and (b) a simple equation

for maximum impact range as a function of missile parameters, together with

many of its derivatives.

In addition, a table of equations of several free-flight trajectory parameters

based on the Kepler ellipse is included. These equations are well known but are

included for convenience. These formulas, together with burnout conditions

determined from the computer study, will aid in the solution of a large variety

of the problems frequently encountered in preliminary design.

The free-flight trajectory for a vehicle is defined by the velocity and position

vectors at burnout. The velocity vector is defined in terms of its magnitude 1

Vb and its angle with respect to the local vertical Pb" The position vector is

defined by an altitude h and surface range xb' VbW hb. and xb are deter-

mined as functions of Pb and the vehicle design parameters.

VELOCITY VERSUS BURNOUT ANGLE

Using Equation (1) the "theoretical" burnout velocity may be determined for

a vehicle. We define the quantity VL as being the loss in velocity caused by

gravitation and atmosphere.

Vb = V* - vL (W)

where

V = V. z I. g ln r. (3)1 1 1

The term velocity will refer to the magnitude of the velocity vector, If the
vector is meant, velocity Vector will be used.
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An empirical equation for V L in terms of vehicle design parameters has

been derived by comparing results of several hundred machine trajectory calc-t-
lations assuming single-stage vehicles, a gravity turn, and a spherical, non-

rotating earth.

MI' C DMA
= _ KKV90g + K D + K (4)L b TKgr) D W a

It will be convenient to discuss the equation term by term, so we will

designate the three components as follows:

Vg gravitational loss = (gt ) -- Kgg) - -K (5)

CD A
Vn = drag loss = K DM (6)

D DW

Va = nozzle-pressure loss = Ka (7)

Gravitational Loss

The gravitational loss was determined by setting the drag equal to zero and
flying the vehicle to several burnout angles. The term gtb is the gravitational
loss to be expected from a vertical flight in a constant gravitational field. A

realistic gravitational field varies in an inverse square of the distance from the

earth's center, so the term actually overestimates this loss. For ranges of
vehicles using currently available propellants, the differences between the amount

gtb and the correct gravity loss will be small; and for this equation the difference

has been included as the conetant Kgg The term { r- Kgb fit S agg * g ' 9 0
curve as a function of Pb* The constant K was determined by a least-squares
curve-fitting technique and usually resulted in a curve fit which was within 30 feet
per second of the machine results. The above form was found to fit actual results

better than a more obvious choice, K cos Pb The latter resulted in maximum

differences of 300 feet per second. Curves for K versus I and N are found
g oin Figure 1, and a curve for Kg versus I is found in Figure Z.
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Drag Velocity Loss

The velocity lost to drag is proportional to the quantity GDMA/Wo. CDM

has been chosen as a single parameter to define all drag curves. The reasons

for this choice are: (a) that most realistic drag curves have approximately the

same form, except for the absolute magnitudes of L;e values, and (b) that the

greater portion of the drag loss occurs early in powered flight, where CD attains

a maximum. The actual drag curve used in the machine trajectory calculation

is shown in Figure 3. The empirical constant KD was obtained by computing

the difference between burnout velocities for similar vehicles with and without

drag. All comparisons were made for identical burnout angles. The constant

was found to be a function of Is/N°, Pb' and NO. However, KD was so weakly

dependent upon N that this effect was disregarded for simplicity in presenting

the results, K D is shown in Figure 4 as a function of IN and

Nozzle-Pressure Loss

For the same propellant flow rate, the effective thrust at sea level ambient

pressure is less than in a vacuum. This may be thought of as a change in specific

impulse. The ratio of sea level to vacuum specific impulse is dependent upon the

chamber pressure, nozzle area expansion ratio, and ratio of specific heats for

the combustion products. Thrust coefficient tables are readily available to provide

this information. It was again assumed that the greater portion of the losses would

occur early in flight, and all losses were computed for vertical trajectories. The

results are given in Figure 5 where Kais plotted as a function of IsI.

Accuracy of Results

Accuracies to within 150 feet per second should be expected with the above

results. Occasionally, cases may exist which exceed these limits. First, drag

curves may not actually be similar to the one selected for this study. Secondly,

simplification of the results to a form which will facilitate rapid computation has

necessitated several approximations. It is believed that the results as presented

will be more useful in preliminary design than extremely accurate results. Guess-

ing that the typical first stage is designed to achieve about 10, 000 feet per second,

the accuracy of 150 feet per second amounts to 1. 5 per cent.
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Application to More Than One Stage

All computations were performed for single-stage vehicles, but the results

may be applied to multistage vehicles.

If the first stage can be assumed to burn out at greater than 200, 000 feet at

a velocity angle less than 75 degrees, the drag losses may be assumed to have

occurred during first stage. It is important to note that the constant KD will

be determined on the basis of the velocity burnout angle for the first stage. For

multistage vehicles, this may be 5 to 15 degrees less than the angle at final-

stage burnout; but for 3b less than 75 degrees, the drag losses are relatively

insensitive to Pb and any reasonable estimate will probably be satisfactory.

Under almost any circumstances, the nozzle-pressure loss can be considered

to occur during the first stage. Constants applicable to the first stage should be

used.

The most significant velocity loss from succeeding stages will be gravita-

tional loss. Since the velocity angle will be more constant during succeeding

stages, it is usually satisfactory to assume a constant value between the assumed

burnout of the first stage and the desired final burnout angle. Then the velocity

loss for succeeding stages may be computed by

R
VLZ - tbz cos P (8)

where P is an intermediate velocity angle, h is an "average" altitude for

second-stage powered flight, and the subscript 2 refers to succeeding stages.

The difference between burnout angles of the first stage and that for the final

burnout will depend upon the thrust pitch program selected for succeeding stages.

Several authors have discussed the optimum pitch program for a variety of

missions assuming powered flight in a vacuum (see references). For a ballistic

missile, where impact range is the desired result, holding the thrust vector

constant with respect to a stationary inertial coordinate system has been found

to yield greater ranges than the gravity turn, For this case, the change in P
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from first-stage burnout.to final burnout will be comparatively small. In con-

trast, many satellite missions require that burnout angles approach or equal

90 degrees. Under these circumstances, a gravity turn or one in which the

vehicle is pitched downward is a more likely trajectory. The resulting differ-

ence in burnout angles between first and final stages will be quite large.

In any trajectory in which thrust is not aligned with velocity, some energy

will be expended in "turning" the velocity vector. The proportion of the thrust

which goes to increasing the velocity varies as the cosine of the angle of the

attack, so for small angles of attack the loss will be small.

Effect of the Earth's Rotation

The significant parameter in determining performa.\ce is the inertial velo-

city. Thus, the velocity of the launch p int must be considered in any realistic

calculation. A simple, albeit approximate, correction may be made by vectorially

adding the inertial velocity vector of the launch point to the vehicle velocity

vector at burnout. In several comparisons between this approximate technique

and that of a machine trajectory for an eastward launch on a rotating earth, this

approximation underestimated the actual burnout velocity. It has not been deter-

mined whether this is generally true; but based upon the few comparisons, we

would expect the approximation to tend toward conservative results.

BURNOUT ALTITUDE VERSUS BURNOUT ANGLE

The burnout altitude is a particularly important parameter in determining

payload capabilities for low-altitude satellites with circular orbits, As with the

rocket equation, a closed-form expression may be derived for the distance

traversed by an ideal rocket in vertical flight (constant g, no drag, constant

specific impulse).

* (1 in r• gtb

h= gltb -- -l (9)

It was found that the above form could be modified to account for drag, nozzle

pressure, and burnout angle.
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(VD+V)ti t 4

h h hhb = h !11IKhf

where

h= 93 + ?-8 + 5 (Z - N)) , l'N- 2 (11)

Equation (10) assumes that the drag and nozzle-pressure losses are averaged

over the duration of flight. This is not exactly true, but the approximation has

proven to be satisfactory because the correction is small. The constant Kh

has been determined empirically. Accuracies for Equation (10) have been

found to agree with machine calculations to about 20, 000 feet.

In calculating values for multistage vehicles, Equation (10) will yield the

altitude of burnout for the first stage. The additional altitude achieved during

succeeding stages may be calculated using the first-stage burnout velocity as

computed by Equation (4) and the following relation derived by integrating

Ig In r - gt cos P3 at a constant, average flight path angle, •.

fin nr, g 2 o
hb2 = hbl + Vbl tbz cos + /g 1Z tb2 I-__-_ Z cos T (12)

where the subscripts I and Z refer to the first and second stage, respectively.

The above form may be extended to cover additional stages. Again, an inter-

mediate value for the flight path angle 7 may be selected between the estimated

first-stage burnout flight path angle and the desired final burnout angle.

No correction is suggested for use with a rotating earth. In several com-

parisons with machine trajectories assuming an eastward launch on a rotating

earth, the altitude value for the nonrotating earth was approximately equal to

that for the rotating earth.
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BURNOUT SURFACE RANGE

The surface range at burnout may be determined by the following empirical

expression.

xb .1 0.h* (13)

The surface range is the least important of the trajectory parameters in deter-

mining gross vehicle performance. However, it is important in that it adds to

the impact range of a surface-to-surface ballistic missile. Again, no correc-

tion is offered for the rotating earth because, for reasonably short flight dura-

tion, the increased inertial velocity of the vehicle and the velocity of the launch

point may be assumed to cancel. Equation (13) has been found to yield surface

range at burnout within an accuracy of about 10 per cent.

For multistage vehicles, the same technique used in determining altitude

may be applied.

Xbz = Xbl + (hbz - habl) tan 3 (14)

FREE-FLIGHT TRAJECTORY

The calculation of the burnout conditions of a vehicle is only an intermediate

step in determining its performance. Performance is usually measured in terms

of impact range, apogee altitude, or some other end condition. Since all vehicles

in free-flight follow a Kepler ellipse, values for range, apogee altitude, arid the

like may be determined from the burnout conditions by using equations yielding

these values in closed form. A number of these equations are listed in Table 1.

RANGE EQUATION

Experience in the optimization of performance of medium- and long-range

missiles at STL has shown that the trajectory which consists of a short period

of vertical flight followed by a gravity turn to staging and a constant attitude

(thrust angle with respect to launch coordinate system) throughout subsequent

stages of flight yields a near-optimum range trajectory.
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In the case of a single-stage missile, the constant attitude portion of the

trajectory is initiated at an altitude of approximately 150, 000 feet. Tho velocity

angle of the missile at burnout is optimized for maximum range. An examination

of thetrajectory equations shows that the range of a missile is determined by

specifying the same vehicle design parameters investigated in the previous sec-

tion. (In determining the empirical equation, however, only one value of the

ratio Is/1 was used, based on a chamber pressure of 500 psi, an expansion

*ratio of 8, and a y of 1. Z4.) This study was performed at a different time from

that in the preceding section, and a slightly different drag curve was assumed,

but it is not expected that the results will be significantly different for this reason.

Machine calculations were performed to determine maximum range of

vehicles launched from a spherical, nonrotating earth. Here, impact range is

measured from the launch point rather than from the burnout point. Computer

data have been used to plot a curve which shows the quantity V* as a function

of missile range. Even with a large variation in vacuum specific impulse,

varying from N00 to 1000 seconds, all of the data points fall essentially on a

single curve for a given N and CDMA/Wo. For any other values of N and

C A/W similar results are obtained. Figure 6 shows the mean curve
DM o

obtained for N0 1. 5 and C DAl 0. 000265.

The results of Figure 6 have been replotted in Figure 7 on semilog paper,

together with a curve given by;

R = D (e V*/Bg - (15)

For ranges varying from 400 to 6000 nautical miles it can be seen that Equa-

tion (15) represents the curve obtained from the machine calculations quite

accurately. We have found that the parameter "B" is very insensitive to

changes in N and C DMA/Wo, while the parameter "D" is fairly sensitive

to such changes. The values of the parameters in Figure 6 are D = 80 and

B = 208.
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The parameter B determines the slope of the fitted curve and the parameter

D determines the displacement. However, the two constants must be treated as

a pair. Many curves might be fitted to the empirical data, giving better accura-

cies in some ranges and poo•rer accuracies in others. We have arbitrarily

selected the value of 208 seconds for B, and all values of D have been deter-

mined on this basis. If another value for B is selected, new values for D

must be derived. Figure 8 shows D as a function of N for various values of

C DM A/WDMo"

The results of Equation (15) can be extended for use from 400 to 10, 800

nautical miles (halfway around the earth) by the following argument. Burnout

angles were selected to maximize range. For ranges beyond 6000nautical miles

the use of maximum-range trajectories results in very large-range misses for

errors in burnout speed. This can be seen by the slope of the curve in Figure 7.

Lofting the trajectories so that the burnout velocity increases as determined with

Equation (15) results in an increase of about five per cent above the maximum-

range burnout velocity for the 10, 800 nautical mile range. At the same time, the

lofting decreases the miss from about 10 nautical miles to less than 2 nautical

miles for an error in the burnout speed of 1 foot per second. For design pur-

poses, it appears that deviation from the maximum-range trajectory for ranges

beyond 6000 nautical miles is reasonable and, in fact, desirable.

In the case of two-stage missiles we note that

"V= II g in r 1 + I1 g inr

Thus, for two-stage missiles Equation (15) becomes

R =2 ( 4 1 /B r4Z/B 1 (16)

By differentiating Equation (16) one may obtain a number of exchange ratios, some

of which have been derived and are presented in Table 2.
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Equation (16) has been checked many times against results of machine

computation, To date. the equation has been accurate to about five per cent of

the range. It has been found that the equation is useful in two ways. First, if

the missile under study has no close counterpart and no machine data are avail-

able, a value for D as found in Figure 8 is used,. Frequently, however, a .

vehicle is studied for which a small amount of machine data is or can be made

available. In this case, the value of D is derived by solving Equation (16)

"backwards. " Once a value of D has been determined for the particular missile

system, the calculation of perturbations of this missile system may be made

using Equation (16) and the D value thus derived.
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Table 1. Miscellaneous Formulas for Kepler Ellipse.

R e+ h b 2 , z
e bE- = - 2 Xsin 2  + x 2 sin2

2
- b = b R = earth radius = 20.9 x 106 feetg Re le

ee

Conservation of Energy V z[t] - e constant

Conservation of Angular V z sin constant
Momentum

Impact Range Angle from f - sin2si-,( - X n bsin2 Ps
Burnout (= - "I e ,

Velocity Required to g Re l-cos 1/2
Obtain Impact Range Vb Sn i

Apogee Altitude h a R e -- Ri
a I-( ee

Velocity Required to 2 g a Re+ha

Obtain Apogee Altitude b i _ e

Period for Complete T =Zr b 3/2

Elliptic Orbit Z) gB

Time to Apogee from _ - 1 'F7 cot ..t

Burnout a Zw -- c b -F Cos
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Table 2. Summary of Exchange Ratios Derived from Simplified Range.Equation.

Single-Stage Vehicles

R (nautical miles) D (ri/B-

OR R +D

gVb Bg

OR__ I(R + D)

= b BW b
B

OR I (R + D)

OR (R + D) In r
B

W0  ( B RN 0 8r - I
W]••--I ; - TDIR +D)•N

b CDMA

w

aw
8 Wb IN C A

No DM
W

0

8W w

L o
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Two-Stage Vehicles

R (nautical miles) = D (I/B r -I
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Numerical subscripts refer to stages and are in order of burning period.
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Two-Stage Vehicles (Continued)

0W1  B RN 8
b- r 2  D(R +D) O
b2 CDMA

0

o DM
w

0

aw 1 =zI

bN 0. CDMA

wo

aWol Wol

-- L wL



TR-59-0000-00792
Page 26

APPENDIX

This appendix reports the theoretical analysis which determined the selec-

tion of missile design parameters for this study. This analysis also suggested

the use of the VL concept in reducing the computer output data to a manageable

form.

Equations of Motion

In determining the performance of.a rocket, one is confronted with complica-

ted differential equations of motion. Accurate solutions are obtained only by

using a digital computer. " owever, one can obtain a large amount of information
about such things as gravitational and atmospheric effects on the performance of
boost rockets by a term-by-term examination of the equations without the com-

puter. The basic equation of motion is:

n= nz, 4.6 W + a [ ,m] (A.1)

where

z = radius vector from earth center to missile

n = thrust to mass ratio = F Ez) /m [t3

t = time

m It] = mass of missile

K = unit vector in the direction of thrust

a = . [gravitatiori + a [drag]

gR z
z

a [drag] = - A " (A. 3)Z m V
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C D =drag coefficient, a function of Mach number

R = radius (,f earth

V =v•hicIc vlocity relative to the atmosphere

•- -" ?-...'. DCC: e.loL;

p = air density

Replacing a. with the terms for a [gravitatiori and a [dragl and dividing by g:

E F [J e Z 1 VZ-CDA Vzt P -- -- C D A (A. 4)

we assume that thrust in a vacuum is proportional to the weight flow rate.

Thrust as a function of altitude is taken as the vacuum thrust corrected for

ambient pressure

F [z = o03 = F = IW (A.5)

F(z] = F (-•/ -4s(A. 6)

whe±,:

,:") = ambient pressure

.o unbient pressure at sea level

I/I = ratio of sea-level thrust to vacuum thrust for identical flow rates.

Values for i1/i may be calculated from tables showing thrust coefficient versus

expansion area ratio, ratio of specific heats for exhaust products, and chamber

pressure. Defining N as ratio of initial thrust to initial weight and assuming

constant W, we can write the equation of motion in terms of missile design

parameters.



TR-59-0000-00792
Page 28

CA v
"I 1 __ is s e z 1 A D"-_ a_ e =- 2 D NO = V(A. 7)

7-0 0 Isw

In some cases, flow rate will not be constant, but we assume it to be so during

the first several seconds of flight. Forming the dot product of Y/V with k,

integrating for a gravity turn (thrust aligned with velocity) and assuming a

spherical, nonrotating earth,

t b t b

--g -I Iln r -- N S dt e--7csI dt
_Nnr-t zN

I
s

0 0

tb

1 2 AT -PV CD dt (A. 8)

0

We define the velocity lost to gravitation, drag, and atmosphere as the following

integrals:

tb

Vg g JRz cos p dt (A. 9)

0
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t b

VD dt (A. 10)

Va = g 8 dt (A. 11)
at

0

and the design velocity

V = Iglnr

So the burnout velocity becomes

Vb = V Vg -- VD -Va (A. IZ)

It is apparent that the velocity lost is intimately tied in with the trajectory

itself. Forming the dot product of V/g with a unit vector normal to the velo-

city, and again assuming a gravity turn and nonrotating earth,

= V -•" e sin P - in (A. 13)VR 2

z

For low velocity, the turning rate is large, and the greater portion of turning

is to be expected early in the trajectory. However, the amount of turning to be

achieved is limited by the desired burnout angle. Therefore, it is frequently

necessary to keep sin P (therefore P) quite small during the early portion of

the trajectory to prevent too much turning. The trajectory can be thought of as
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consisting of three segments: (a) a portion during which the vehicle flic.s steeply,

(b) a period of turning, and (c) a portion in which the velocity angle remains

relatively constant.

For the early portion of flight, the velocity can be approximated by:

V £-- (No - l) g t (A. 14)

For a given burnout angle, the start of the period of turning will depend primarily

upon the initial thrust-to-weight ratio, N . Thus, for low values of N0

(near 1. 0), the initial portion of flight will be at lower velocity and the turning

rate would be increased. To achieve the same burnout angle as that for a higher

value of N , the initial portion of the trajectory must be steeper (lower f).
0

The turning rate for a gravity turn is zero when the vehicle velocity equals

that required for a circular satellite orbit at the same altitude.

Gravity Loss

We can use the foregoing to gain insight into the behavior of the velocity lost

to gravitation and atmosphere. In vertical flight, the gravity loss should be por-

portional to tb' For a trajectory burning out at angle Ab' the gravity lose will

be some fraction of that lost in purely vertical flight; and we would expect that

fraction to depend upon N and the proportion of total mass consumed as pro.-0
pellant (1 - i/r).

It is-sometimes proposed that the velocity lost to gravitation is not really

lost at all but that it is converted into potential energy. It may be observed,

however, that a vehicle in powered flight is not a conservative system. A

ballistic missile does not burn impulsively (i. e. , all the propellant is not burned

on the ground). Some of the fuel is used to lift the unburned fuel, so that the

vehicle always ends up at some finite altitude above the earth. Energy is impar-

ted to the expended propellants by raising unburned propellant to some finite

altitude.
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One way to see what happens is to consider the following comparison of

two single-stage vehicles which are identical in all respects except thrust.

Figure 9 compares vertical trajectories for the two vehicles.

I I"

I I

I i
I I

I

Vehicle (1) Vehicle (2)

Figure 9. Comparison of Impulsive and Finite
Thrust for Vertical Trajectory.
(Constant gravitational field and no
atmosphere. )

(2012)

With vehicle (1) we assume an infinite thrust (impulsive burning) and with

vehicle (2) a finite thrust. Vehicle (1) burns out all its propellants at the

T*

surface of the earth, achieves a th'moretical velocity V*, rises, returns

to earth and impacts at the same velocity. For vehicle (2),

Vb =V* -gtb (A. 15)

V .. ~ (A. 16)
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* t.

Vimpact - g t (lI- t) (A. 17)

where

tb " burning time for vehicle (2)

t. = time from burnout altitude to
J impact on re-entry

tj will always be less than t,, for it takes a time tb to get from a velocity

of 0 to V , whereas it takes a time t. to get from a velocity of V to
b i b

Vimpact' where Vimpact >Vb. The kinetic energy of vehicle (1) at impact
*

will be essentially proportional to the square of its impact velocity, V . The

kinetic energy of vehicle (2) will be essentially proportional to the square of its

impact velocity, and V.impact will always be smaller than the theoretical

velocity of vehicle (1). As the thrust-to-weight ratio of vehicle (2) increases,

Vimpact gets closer to V , and hence gravity losses decrease. In actual

missiles, the thrust-to-weight ratio will be closer to one than infinity because

the weights of engines and structural components will increase with increased

thrust. We reach a point where the advantage of higher thrust in terms of veloc-

ity losses is offset by increase in burnout weight.

We see that not all of the velocity loss goes into gaining altitude; some is

lost to the expended propellants. By substituting the appropriate numerical

values for an existing vehicle into these equations, it was determined that

around -- per cent of the velocity loss went into gaining altitude; 75 per cent

was lost as equivalent energy to the expended propellants. This calculation

presents a good argument for holding the burnout altitude as low as possible.

it is true that low-burnout altitudes mean larger drag effects, but these are

relatively small when compared to gravity losses. Aerodynamic effects, of

course, lead to heating, and heating often means an increase in structural

weight, but gravitational losses are still a prime concern.
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Drag Loss

The drag loss, Equation (A. 10), is dependent upon the ratio CDA/Wo, P,

and V2. The air density, p, is dependent upon altitude and, for qualitative

purposes, can be considered to exponentially decay with altitude.

p (z) = p e-k (z-R ) (A. 18)

The dependency of the drag losses upon V2 will be significant during late portions

of flight if the trajectory is flat (low) and high velocities are achieved below, say,

150, 000 feet. However, the effect of V for most "normal" trajectories is not

important because these values occur when the vehicle is beyond the atmosphere.

The greatest erosion of velocity occurs when CD is near its peak and early in

flight when p is of the same magnitude as p.. In a typical trajectory with an

initial thrust-to-weight ratio. of 1. 2, the vehicle achieved Mach I in 80 seconds

at about 30, 000 feet, where the density is approximately 0. 37 times that at the

earth's surface.

It would be expected that for equivalent trajectories the velocity loss to drag

would be sensitive to NO• There are two effects, For high N higher velocities

are achieved at lower altitudes, and hence the density for Mach I velocity is large.

But for high N the duration of time through which the drag forces ate acting is

reduced, and the effects will tend to cancel. It turns out that drag losses are very

insensitive to N
0

For the most part, VD depends upon C DMA/Wo, No/Is, and P at bu.n-

out. Because the trajectory changes little with variation in CDMA/W., the

losses can be expected to be proportional to this quantity. CDM (the maximum

CD) is the single parameter selected to be characteristic of all drag curves for

reasons stated elsewhere in this paper. The term Is/N is equivalent to

Wo/*, which determines the change in ODMA/W[t) with time. For the same

initial weight, the missile with lower Is/N will have less weight at the time

when the drag forces become most important. The burnout angle p is a
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measure of the proportion of the total trajectory contained in the atmosphere.

As P is increased, the density associated with each velocity is increased, and

the resulting velocity loss is greater.

As the trajectory becomes very flat and high velocities are achieved at low

altitudes, the effect of V and the long duration of the drag force combine to

increase the drag loss to very high values. It is not expected that such trajec-

tories are realistic, as aerodynamic heating may preclude extremely fiat burn-

out angles. Flat burnout angles may be achieved if the thr. it is reduced to

increase the total time of powered flight. Usually, thrust levels which are

sufficient to boost the vehicle at launch yield comparatively short burning times

over-all. Thrust may be reduced by throttling a single-stage vehicle or, more

profitably, by staging. If either of these techniques is not sufficient, and if flat

burnout velocities are required, a coast period may be inserted between burning

periods. If restart capabilities are not available or not desirable, the remain-

ing alternative is to fly the vehicle steeply during an early portion of flight and

pitch down after sufficient altitude has been achieved, yielding a negative angle

of attack. In this type of trajectory, considerable velocity (and payload) is lost

in turning the velocity vector when the magnitude of the velocity is high. To

date, no approximation has been found to determine these "turning losses"; the

only realistic approach has been to use the computing machine.

Nozzle-Pressure Loss

The term V results from the fact that thrust is lost when the nozzlea
pressure in the exit plane is less than the ambient pressure. This loss is

frequently thought of in terms of a reduction in specific impulse. The arnnunt

of the thrust loss as a function of trajectory parameters is dependent only upon

the ambient pressure, so the total velocity loss occurs early in powered flight.

The integral shows that the nozzle-pressure loss should also be proportional

to N * However, an increase in N increases the rate at -which altitude is
0 0

achieved, reducing the duration of flight time at high ambient pressure by an

amount also dependent upon N ; and the two effects tend to cancel. The effect

of IS/No, or the change in vehicle weight with time, is less significant with

the nozzle-pressure loss than with the drag loss because the Jargest percentage

of nozzle-pressure loss occurs early in powered flight.
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NOMENCLATURE

A vehicle reference area for drag calculations

B empirical parameter in simplified range equation

C drag coefficient, function of Mach number
D

CDM maximum drag coefficient

D empirical parameter in simplified range equation

F thrust (pounds)

g gravitational constant, 32. 2 feet/second
2

h burnout altitude measured from earth's surface

T intermediate altitude between first stage burnout and final burnout to
compute velocity loss in succeeding stages

h burnout altitude for vertical trajectory neglecting atmospheric effects

i index denoting stage measured from launch

I vacuum specific impulse, vacuum thrust divided by flow r-ate of fuel

I sea level specific impulse, sea level thrust divided by flow rate of fuel
K

K empirical constant used to determine V
aD

K empirical constant used to determine V
g g

K empirical constant used to detern.ii;.3 V

9hZ Mach number

m mass of vehicle

N initial thrust/weight ratio, launch thrust divided by launch weighto

n thrust/mass ratio, a function of time

p atmospheric pressure, a function of altitude

Ps atmospheric pressure at sea level
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R impact range

6R radius of earth = 20. 9 x 10 feete

r burnout mass ratio - stage initial weight (mass) divided by stage
burnout weight (mass)

T total period of elliptic orbit

t time

t a time from selected trajectory conditions to apogee

tb burning time

t. time from reaching burnout altitude to impact on re-entry

V vehicle velocity vector

"V tJ magnitude of velocity as function of time

"V velocity lost to nozzle pressurea

"V b magnitude of burnout velocity

"VD velocity lost to drag

"Vmpact velocity at impact

"V velocity lost to gravitationg

V t~tal velocity lost = V + V + V
L a D g

V theoretical velocity as determined by rocket equation

Wit] weight of vehicle, function of time

W vehicle initial weight

Wb vehicle final (burnout) weight

W. weight jettisoned between stages of two stage vehicle
J

W weight of payload (includes guidance and other weights which do not
P vary with last stage size)

xb surface range at burnout
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& radius vector to vehicle from earth center

z magnitude of z

angle between vehicle velocity vector at burnout and local vertical

selected P between those for first stage and final stage burnout tu beused in determining velocity losses and altitude gains

C eccentricity of free flight ellipse

IT Unit vector aligned with thrust

2nondimensional parameter = Vbm/Bg Re

"Y ratio of specific heats of combustion products'

P atmospheric density, function of altitude

3] brackets indicate functional notation

nondimensional parameter = Re + hb/R-e

ds impact range angle

Ou partial derivative of u with respect to v with w held constant

w
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